مدل های هیبرید موجک و شبکه عصبی برای پیش بینی پارامترهای کیفی (tds , ec) و رسوب در رودخانه ها
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه قم - دانشکده فنی
- نویسنده فرهاد صدیق
- استاد راهنما طاهر رجایی
- سال انتشار 1391
چکیده
امروزه مدیریت در برداشت و مصارف آب به توان و پتانسیل آبدهی و کیفیت منابع آب وابسته است. از اینرو بررسی و پیش بینی تغییرات پارامترهای کیفی آب در طول یک رودخانه بایستی مورد توجه قرار گیرد. جهت تحقق این امر، مدل های متعددی در زمینه مدیریت و پیش بینی کیفیت آب استفاده می شود. پیش بینی دقیق سری زمانی، انگیزه محققان برای توسعه مدل های نو در زمینه مدیریت منابع آب می باشد. یکی از روشهایی که در سالهای اخیر در زمینه هیدرولوژی مورد توجه قرار گرفته، استفاده از موجک (wavelet) به عنوان روشی نوین و بسیار موثر در زمینه آنالیز سیگنال ها و سری های زمانی است. استفاده از موجک ها در زمینه پیش بینی های هیدرولوژیکی علاوه بر قابلیت های غیر ایستایی با توسل به قابلیت های چند رزولوشنی در حال گسترش است. تحقیق حاضر، به بررسی مدل های هیبرید موجک و شبکه عصبی در مقایسه با مدل شبکه عصبی مصنوعی و دیگر مدل ها برای پیش بینی پارامترهای کیفی و رسوب در رودخانه ها صورت گرفته است. در این تحقیق مدل های هیبرید موجک- عصبی شامل: مدل موجک- عصبی (زیرسری ها)، مدل موجک- عصبی (جمع زیرسری ها) و مدل موجک- عصبی (تاخیر زیرسری ها) استفاده شده است. مدل نوع سوم ابداعی این تحقیق بوده و ایده ای جدید در استفاده از موجک و شبکه عصبی برای پیش بینی سری های زمانی می باشد. نتایج مقایسات انجام یافته در مباحث مختلف این مطالعه، نشان دهنده برتری مدل هیبرید موجک- عصبی بالاخص مدل موجک- عصبی (تاخیر زیرسری ها) نسبت به مدل های دیگر بوده است.
منابع مشابه
مقایسه قدرت مدل های شبکه عصبی مصنوعی و شبکه عصبی پویا در پیش بینی نرخ ارز: کاربردی از تبدیل موجک
این مطالعه تلاشی است در جهت بهکارگیری ترکیب مدل شبکهی عصبی پویا و تجزیهی موجک جهت میسر نمودن امکان انتخاب یک الگوی بهینه جهت پیشبینی متغیر مذکور میباشد. جهت تحقق این مهم، از دادههای سریزمانی ماهانهی نرخ ارز طی بازهی زمانی فروردین 1377 الی آذر 1391، که مشتمل بر 177 مشاهده بوده که از این بین، تعداد 150 مشاهده جهت مدلسازیها استفاده شده و تعداد 27 مشاهده نیز جهت شبیهسازی و یا به بیان دی...
متن کاملمدل پیشنهادی برای پیش بینی تولید ناخالص داخلی کاربرد مدل هایARIMA شبکه های عصبی و تبدیل موجک
تولید ناخالص داخلی یکی از عمده ترین و کاربردی ترین شاخص های اقتصادی است؛ لذا پیش بینی آن،همواره توجه کلیه دست اندرکاران اقتصادی و علوم مرتبط را به خود جلب کرده است. هرچند روش های تجزیهو تحلیل سری زمانی و روش های غیرخطی همانند مدل های شبکه عصبی مدتهاست که برای پیش بینی این گونهمتغیرها به کار می روند، لیکن کاربرد ابزار توانمند موجک در پردازش داده ها و بررسی لایه های پنهان آن نشانمی دهد که سری زما...
متن کاملتحلیل عدم قطعیت مدل های شبکه عصبی و نروفازی در پیش بینی جریان رودخانه
پیش بینی آورد رودخانه در مدیریت منابع آب از اهمیت فراوانی برخوردار است، اما به دلیل عدم قطعیت بالا در عواملی که فرآیند بارش- رواناب را سبب میگردند، همواره با مشکلاتی همراه بوده است. یکی از روشهایی که میتواند این مشکل را تا حدی کاهش دهد، تحلیل عدم قطعیت پیشبینیهای انجام شده میباشد. این تحلیلها در مدلهای آماری سابقه طولانی دارند، ولی برای مدلهای شبکه عصبی و نروفازی کمتر مورد استفاده قرا...
متن کاملپیش بینی خشکسالی با استفاده از مدل تلفیقی شبکه عصبی مصنوعی- موجک و مدل سری زمانیARIMA
تبدیل موجک یکی از روشهای نوین و بسیار موثر در زمینه تحلیل سیگنالها و سریهای زمانی است. در این روش سیگنال شاخص بارش استاندارد (SPI) با استفاده از موجک مادر منتخب تجزیه شده، دادههای حاصل بهعنوان ورودی مدل شبکه عصبی مصنوعی در نظر گرفته شده و یک مدل تلفیقی برای پیشبینی خشکسالی ارائه میگردد. در این تحقیق، از شبکههای عصبی مصنوعی پرسپترون چند لایه (MLP) و تابع پایهای شعاعی ((RBF، سری زمانی AR...
متن کاملکاربرد مدل شبکه عصبی- موجک برای پیش بینی ویژگی های غیرایستا و غیرخطی سری زمانی تراز آب زیرزمینی
سفره های آب زیرزمینی غالباً به عنوان سیستم هایی با ویژگی های غیرایستا و غیرخطی شناخته می شوند. مدل سازی این سیستم ها و پیش بینی حالت های آینده آن ها نیازمند تشخیص این ویژگی های بنیادی است. اخیراً، آنالیز موجک به دلیل توانایی آن در رمزگشایی ویژگی های اشاره شده، به طور گسترده ای در زمینه پیش بینی سری های زمانی هیدرولوژیکی مورد استفاده قرار گرفته است. در این مقاله توانایی مدل ترکیبی ...
متن کاملبررسی ترکیب تبدیل های موجک و شبکه عصبی در پیش بینی جریان های سطحی تنگه هرمز
جریانهای سطحی اقیانوسی، نقش مهمی در انتقال گرما و تغییرات آب و هوایی دارد. ازاینرو، پیشبینی جریانهای دریایی از اهمیت بسزایی در اقیانوسشناسی برخوردار است. در این پژوهش با بهکارگیری شبکهعصبی و تکنیک تبدیل موجک به پیشبینی جریانهای سطحی تنگههرمز پرداخته شده است. بدین منظور دادههای ثبتشده این حوزه از نوامبر سال 1992 تا دسامبر سال 2014 با گام زمانی 5 روزه از سایت ناسا تهیه و با بهکا...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه قم - دانشکده فنی
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023